SYNTHESIS AND STEREOISOMERIZATION OF 2-(1-ALKOXYIMINO-2,2,2-TRIFLUOROETHYL)-5-TRIMETHYLSILYLFURANS

Yu. Melnik, M. Vorona, G. Veinberg, J. Popelis, L. Ignatovich, and E. Lukevics

2-(1-Alkoxyimino-2,2,2-trifluoroethyl)-5-trimethylsilylfurans were synthesized by the condensation of 2-(trifluoroacetyl)-5-trimethylsilylfuran with alkoxyamines. According to ¹H and ¹⁹F NMR spectroscopic data, the alkoxyimino group in the E-isomers descreens the H-3 and H-4 protons of the furan ring more strongly than in the Z-isomers, shifting their signals downfield. The fluorine atoms of the α -trifluoromethyl group in the Z-isomer are characterized by a downfield shift in relation to the E-isomer.

Keywords: 2-(1-alkoxyimino-2,2,2-trifluoroethyl)-5-trimethylsilylfurans, *syn,anti* stereoisomerism, ¹H, ¹⁹F spectroscopy.

The presence of furan in various types of organic compounds is a determining factor in their display of biological activity, the effectiveness of which depends on the structure of substituents at positions 2 and 5 of the heterocycle. This tendency was observed, in particular, during a comparative study of the toxicity of our previously synthesized 5-alkyl-, 5-trialkylgermyl-, and 5-trialkylsilyl-2-trifluoroacetylfurans [1].

In order to develop further the synthetic basis for the production of new biologically active substances based on 2-(trifluoroacetyl)-5-trimethylsilylfuran (1) we realized the alkoxyimination of this compound and studied the stereoisomerism of the products.

2, 3 a R = Me, b R = Et, c R = *n*-Pr, d R = *i*-Pr, e R = *n*-Bu, f R = *n*-C₈H₁₇, g R = CH₂CH=CH₂, h R = CH₂Ph

Alkoxyimination of the trifluoroacetyl group in the initial furan 1 with the hydrochlorides of alkoxyamines **2a-h** was carried out in boiling ethanol in the presence of sodium acetate. Compounds **3a-h** were isolated from the reaction mixture by column chromatography with yields of 7-70%. Their chromatomass-spectrometric analysis indicates that apart from the methoxyimino derivative **3a**, which consists of two isomers, the other alkoxyimino derivatives **3b-g** are represented almost entirely by only one isomeric form (Table 1).

Latvian Institute of Organic Synthesis, Riga; e-mail: veinberg@osi.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 834-838, June, 2005. Original article submitted December, 7, 2004.

Analysis of the ¹H and ¹⁹F NMR spectra (Table 2) showed that the trifluoroacetyl group in compound **3a** is arranged in two ways in relation to the $C_{(2)}$ – $C_{(6)}$ bond. Besides each conformer **A** and **B** corresponds to fixed *anti-(E)* of *syn-(Z)* arrangement of the methoxy group.

This could be indicated in the spectrum of the conformer **B** by the presence of long-range spin–spin coupling constants for the H-3 proton and fluorine nuclei (${}^{5}J_{HF} = 1.7-2.2$ Hz), due to the W-conformation of the five chemical bonds situated between them, which absent in the structure of conformer **A**.

As far as the hydroxyimino group in 2-(α -alkoxyiminoethyl)furans is concerned, it is known that this group descreens the H-3 and H-4 protons of the furan ring more strongly than in the *E*-isomers, leading to a downfield shift of their signals. A similar descreening effect from the methoxyimino group in the *Z*-isomer appears in relation to the protons of the α -methyl group, shifting their signals downfield compared with the *E*-isomers [2, 3].

According to the above-mentioned data, the chemical shifts of the H-3 protons in the furan ring show unambiguously that the methoxy group has *E*-geometry in conformer **A** of compound (**3a**) (7.34 ppm) (Table 2) and *Z*-geometry in conformer **B** (6.75 ppm). [With identical spatial orientation for the isomeric alkoxyimines both in our synthesized compounds and in those described in [2, 3] their nomenclature in the case of **3a-g** is reversed in so far as the replacement of hydrogen atoms by fluorine atoms changes the seniority of the

Com- pound	R_f^*	E/Z isomers	MS-GC, <i>m/z</i> (<i>I</i> _{rel-} %)	Yield, %
<i>E-</i> 3a	0.23	93/7	265 [M ⁺] (25), 250 [M ⁺ -Me] (36), 123 (9),	7
Z-3a	$0.23, 0.14^{*2}$	20/80	89 (32), 77 (100) 265 [M ⁺] (27), 250 [M ⁺ −Me] (30), 123 (7), 89 (41) 77 (100)	63
E-3b Z-3b	0.28	>99/<1	279 [M ⁺] (62), 264 [M ⁺ –Me] (39), 236 (17), 103 (55), 77 (100) 279 [M ⁺] (33), 264 [M ⁺ –Me] (100), 236 (21), 150 (36), 73 (16)	58
<i>E</i> -3c	0.36	>99/<1	251 [M ⁺ -C ₃ H ₆] (4), 236 [M ⁺ -Me] (33), 220 (48), 77 (35), 43 (100)	29
<i>E</i> -3d	0.26	100/0	251 [M ⁺ -C ₃ H ₆] (31), 236 [M ⁺ -Pr-Me] (76), 123 (10), 75 (100)	7
E-3e	0.38	98/2	307 [M ⁺] (14), 292 [M ⁺ -Me] (7), 236 (52), 220 (66), 123 (14), 77 (100)	23
E- 3f	0.34	100/0	363 [M ⁺] (6), 348 [M ⁺ -Me] (4), 262 (35), 236 (47), 220 (98), 123 (16), 73 (67), 43 (100)	12
E- 3g	0.32	98/2	291 [M ⁺] (31), 276 [M ⁺ –Me] (3), 128 (22), 73 (100), 41 (63)	65
E-3h	0.31	98/2	$341 [M^+] (4), 326 [M^+ - Me] (3), 91 (100), 77 (11)$	28

TABLE 1. The Physicochemical Characteristics of 2-(1-Alkoxyimino-2,2,2-trifluoroethyl)-5-trimethylsilylfurans **3a-h**

* Data from TLC, 1:10 ethyl acetate-petroleum ether system.

*² A chromatically inseparable mixture.

Com-	د ر			Chemic	al shifts §, ppm., SSCC (J, Hz)	
punod	Contormer	H-3, d	H-4, d	Si(CH ₃) ₃	R	CF ₃
E-3a	4	734(J=34)	671(J=34)	0.28	4.14 (3H s. OCHs)	-66.12
Z-3a	B	6.75 (J = 3.4, 2.2*)	6.65 (J = 3.4)	0.29	4.12 (3H, s, OCH ₃)	-63.83
E-3b	V	7.34 (J = 3.4)	(4.70) (J = 3.4)	0.28	1.37 (3H, t, $J = 6.6$, CH ₂ CH ₃); (2H, q, $J = 6.6$, CH ₂ CH ₃)	-66.10
E-3c	¥	7.34 (J = 3.4)	$6.71 \ (J = 3.4)$	0.28	0.91 (3H, t, <i>J</i> = 6.6, CH ₂ CH ₃ CH ₃); 1.70-1.87 (2H, m, CH ₂ CH ₃); 4.36 (2H, t, <i>J</i> = 6.6, OCH ₃)	-66.12
<i>E</i> -3d	A	7.33 (J = 3.5)	$6.71 \ (J=3.5)$	0.28	1.36 (6H, d, <i>J</i> = 6.6, 2CH ₃); 4.47-4.65 (1H, m, OCH)	-66.43
E-3e	V	7.33 (J = 3.3)	6.71 (J = 3.3)	0.28	0.95 (3H, t, <i>J</i> = 7.2, CH ₂ CH ₂ CH ₂ CH ₂); 1.35-1.56 (2H, m, CH ₂ CH ₂ CH ₂ CH ₃); 1.68-1.85 (2H, m, CH ₂ CH ₂ CH ₂ CH ₃); 4.37 (2H, t, <i>J</i> = 7.2, OCH ₂)	-66.04
E-3f	¥	7.33 (J = 3.5)	6.71 (J = 3.5)	0.28	0.87 (3H, t, J = 6.5, C ₇ H ₁₄ CH ₃); 1.22-1.47 (10H, m, CH ₂ CH ₂ (CH ₂) ₅ CH ₃); 1.70-1.85 (2H, m, CH ₂ C ₆ H ₁₃); 4.34(2H, t, J = 6.5, OCH ₃):	-66.06
E-3g	A	7.36 (J = 3.4)	$6.71 \ (J = 3.4)$	0.28	4.86(2H, d, <i>J</i> = 5.9, OCH ₃); 5.26-5.45 (2H, m, CH ₂ CH= <u>CH₃);</u> 5.97-6.18 (1H, m, CH ₂ CH=CH ₂)	-66.03
E-3h	ν	7.35 (J = 3.5)	6.69 (J = 3.5)	0.28	5.43 (2H, s, CH ₂); 7.38-7.50 (6H, m, C ₆ H ₅)	-66.37
	ľ					

ABLE 2. The ¹ H and ¹⁹ F NMR Spectra of 2-(1-Alkoxyimino-2,2,2-trifluoroethyl)-5-trimethylsilylfurans $3a-h$	
ΤA	

* SSCC⁵ J (H–CF₃).

trifluoromethyl group.] The opposite tendency could be observed in the case of the fluorine atoms of the α -trifluoromethyl group, which unlike the protons of the α -methyl group are characterized by a more downfield signal (-63.83 ppm) for the *Z*-isomer than for the *E*-isomer (-66.12 ppm).

The chemical shifts of the H-3 protons in the other alkoxyimino derivatives of furan **3b-h** in the region of 7.33-7.66 ppm indicate that they are all represented almost entirely by only one **A** conformer with *E*-geometry for the alkoxyimino group (Table 2).

Determination of the cytotoxic characteristics of the synthesized substances *in vitro* according to the standard procedure [4] showed that only compounds 3a,d at concentrations of 50-100 µg/ml caused the destruction of 50% of monolayer tumor cells of the HT-1080 line (human fibrosarcoma). Compounds 3c,d,h did not exhibit cytotoxic characteristics.

The investigation has made it possible to synthesize low-toxicity alkoxyimino derivatives of 2-(trifluoroacetyl)-5-trimethylsilylfurans **3a-h** and also to identify the spatial arrangement of the alkoxy- and trifluoromethyl groups on the basis of data from ¹H and ¹⁹F NMR spectroscopy.

EXPERIMENTAL

The NMR spectra were recorded on a Varian 200 Mercury spectrometer (200 MHz for ¹H, internal standard TMS, and 188 MHz for ¹⁹F, external standard CFCl₃) in CDCl₃. The mass spectra were obtained on an HP6890 GC-MS chromato-mass spectrometer (70 eV). The reaction was monitored by TLC on Merck Kieselgel plates with development in UV light. Merck Kieselgel silica gel (0.063-0.230 mm) was used for preparative column chromatography. Reagents and materials from Acros were used in the experiments. The hydrochlorides of the alkoxyamines **2a-h** were synthesized by O-alkylation of N-hydroxysuccinimide with the respective alkyl halides followed by hydrolysis of the obtained N-alkoxysuccinimides with dilute hydrochloric acid.

Production of 2-(1-Alkoxyimino-2,2,2-trifluoroethyl)-5-trimethylsilylfurans (3a-h) (General Procedure). Sodium acetate (463 mg, 5.71 mmol) and the alkoxyamine **2a-h** hydrochloride (3.17 mmol) were added to a solution of 2-trifluoroacetyl-5-trimethylsilylfuran (450 mg, 1.90 mmol) in ethanol (15 ml). The mixture was boiled for 4 h, and the solvent was evaporated under vacuum. The residue was chromatographed on a column of silica gel in 1:10 ethyl acetate-petroleum ether. In the case of **3a** (R = Me) the *E*-isomer was isolated from the fraction with R_f 0.23, while a mixture of *E*/*Z*-isomers was isolated from the inseparable mixture of fractions with R_f 0.23 and R_f 0.14 respectively. The fractions from which the other substances **3b-h** were obtained were characterized almost entirely by the presence of only one stereoisomer.

REFERENCES

- 1. L. Ignatovich, D. Zarina, I. Shestakova, S. Germane, and E. Lukevics, *Metal-Based Drugs*, **8**, 211 (2002).
- 2. E. Abele, Yu. Popelis, E. Lukevics, M. Shimanska, and Yu. Goldberg, *Khim. Geterotsikl. Soedin.*, 18 (1994).
- 3. A. S. Demir, O. Sesenoglu, D. Ulku, and C. Arici, Helv. Chim. Acta, 86, 91 (2003).
- 4. G. A. Veinberg, I. Shestakova, N. Grigan, D. Musel, I. Kanepe, I. Domrachova, V. Grigoryeva, O. Zharkova, I. Turovskis, I. Kalvinsh, A. Strakovs, and E. Lukevics, *Eur. J. Med. Chem.*, **33**, 755 (1998).